ENERGY AUDIT REPORT OF OVERHEAD LINE AND ITS MOST ECONOMICAL CONDUCTOR

WORKS/ PROJECT: Test Project

Report Date: 26/11/04

CASE STUDY:

A 2.5 km long, 11 kV overhead line with ACSR 'LYNX' conductor having 183 mm² equivalent aluminium area, delivers power to a certain works having an electrical load of 2000 kW at 0.9 power factor. The equivalent spacing between overhead line conductors is 700 mm and its temperature is 55°C. The annual load factor of the works is 0.5.

Generate report of this existing line suggesting Most Economical Conductor for the above system. Also generate information of the suggested line alongwith benefits over the existing one. Take cost of unit energy as Rupees 3.05, rate of maximum demand charge as Rupees 200 per kVA per month and conductor Area Index as 2030.

ANALYSIS REPORT:

The overhead line under examination is making an annual transmission loss of 63109 kWh of energy. This loss of energy is equivalent to Rupees 1.925 lakh(s) per annum at the rate of Rupees 3.05 per kWh energy charge.

Voltage Regulation in the existing overhead line is 1.27 percent. This Regulation is OK as per Indian Electricity Rules.

Loading capacity of the existing overhead line is 35.99 MWkm under the given peripheral conditions.

Current through the overhead line is 118.1 ampere(s) for the given load of 2000 kW.

Most Economical Conductor for the overhead line under the given boundary conditions is 2 circuit(s) of DOG conductor having cross sectional area of 105 mm² (Equivalent aluminium area) i.e. 65 mm² equivalent nominal copper area.

The Most Economical Conductor will reduce the annual line losses from 63109 kWh to 54332 kWh leading to an annual saving of 8777 kWh. In monitory terms this saving is equivalent to Rupees 0.268 lakh(s) per annum.

Equivalent loss part of kVA demand (rms) will reduce from 7.2 kVA (rms) to 6.2 kVA (rms). This reduction in kVA demand leads to a gain of 1 kVA. The loading capacity of the line increases accordingly within the same contract demand. Further this reduction in kVA is equivalent to a saving of Rupees 0.024 lakh(s) per annum at the rate of Rupees 200 per kVA of Maximum Demand per month.

Gross monitory saving will be Rupees 0.292 lakh(s) per annum.

One time investment on re-organization of 2.5 km overhead line will be Rupees 6.598 lakh(s) only towards the cost of conductors and its associated accessories. This

amount does not include the cost of existing conductors, which will be about Rupees 5.583 lakh(s) only, had it been new conductors. However, it is to be noted that this Re-organization scheme has considered the continuation of the services of the existing overhead line and its conductor.

In the re-organized arrangement of Most Economical Conductor, the number of circuits/ parallel conductors/ bundled conductors per phase will be 2 and additional number of parallel overhead line structures (on rail poles) will be 0. Thus the additional cost of structures will be Rupees 0 lakh(s).

Estimated cost of exclusively new overhead line(s) as suggested above, with the Most Economical Conductors will be approximately Rupees 5.799 lakh(s) per km. This estimation is based on the Conductor Index of 2030 and rail pole structure for the overhead line.

Assuming the production losses due to the downtime of the overhead to be 25% of the additional investment in re-organization, the downtime losses come to Rupees0.254 lakh(s) only.

The total cost of re-organization, comprising of investment on additional conductors & related accessories, investment on additional overhead line structures and downtime losses, comes to Rupees1.269 lakh(s).

Loading capacity of the line with the most economical conductor will be 46.958 MWkm.

Voltage Regulation in the new overhead line will be 0.98 percent. This Regulation is BETTER than that in the existing line and is OK as per Indian Electricity Rules.

For more details, the following annexed result sheets, obtained from the computerized program, may be consulted:

1. RESULTS OF REGULATION & DROP WHEN SENDING VOLTAGE IS KNOWN 2. RESULTS OF MOST ECONOMICAL CONDUCTOR SELECTION

Pay Back period of this re-organization scheme will be 4.35 years.

RECOMMENDATION: IMPLEMENT THE FINDINGS

Report generated by Elect 7.05

REGULATION AND VOLTAGE DROP IN SINGLE CONDUCTOR OHL (Vs GIVEN)

INPUT DATA :	
1. Sending end voltage in kV	11.000
2. Receiving end Load in kW	2000
3. Power factor of the load	0.900
4. Load factor of the system	0.500
5. Name of overhead line Conductor	LYNX
6. Length of the overhead line in km	2.5
7. Equiv.spacing between conductors in mm	700
8. OHL Conductor temperature in °C	55.0

R e s u l t s :		
1 Receiving end load shared by conductor path	kW	2000.0
2 Receiving end voltage of the OHL	kV	10.86
3 Sending end power factor	Factor	0.8968
4 Percentage voltage regulation	%	1.27
5 Voltage drop in the overhead line/ phase	Volts	93.00
6 Annual energy losses in the overhead line	kWh	63109
7 Total line losses (Maxm.)	kW	18.44
8 Total line losses (rms value)	kW	7.20
9 Resistance/ conductor of the OHL at 55°C	Ohms	0.4405
10 Inductive React./ conductor of the OHL.	Ohms	0.6525
11 Capacitive React./ conductor of the OHL.	Ohms	-
12 Capacitance/ conductor of the OHL.	MFD	0.0325
13 Form factor of the system.	Factor	1.25
14 Line efficiency of the OHL system.	%	99.09
15 Surge impedance of the OHL.	Ohms	252.747
16 Current through conductor of the OHL	Amps.	118.1
17 Disruptive critical voltage/ phase	kV	72.2
18 Equivalent impedance/ phase of OHL	Ohms	0.7873
19 Equivalent Cu cs area of conductor	sq.mm.	110
20 Equivalent Al cs area of conductor	sq.mm.	183
21 Current carrying capacity of conductor	Amps.	360

RESULTS OF MOST ECONOMICAL CONDUCTOR SELECTION

INPUT DATA :

1. Limiting conductor size for the overhead line	LION (140 mm ²)
2. OHL system voltage in kV (Sending end)	11.000
3. Loading capacity of OHL in kW	2000.0
4. Power factor of the load on overhead line	0.900
5. Annual Load factor of the system	0.500
6. Length of the overhead line in km	2.5
7. Average span of the overhead line in m	120
8. Overhead line Conductor temperature in °C	55.0
9. Permissible voltage regulation in percent (%)	9.000
10. Inflated value of cond. area constant	2030.00
11. Annual interest+depr. of conductor cost in %	15.00
12. Cost of unit electricity in Rupees	3.050
Results.	
1 Most economical number of OHL feeder(s)	2 Circuit(s)
2 Most economical Conductor selected for the OHL	$DOG_{65} \text{ mm}^2$
3 Receiving end voltage of the OHL	10 893 kV
4 Sending end power factor of the OHL	0.8985
5 Percentage voltage regulation of OHL	0.98 %
6 Voltage drop in the overhead line/phase	64.56 Volts
7 Total overhead line losses (rms)	6 20 kW
8 Line efficiency of the OHL system	99.7 %
9 Current through the overhead line	116.6 Amps
10 Disruptive critical voltage/phase	62.2 kV
11 Total corona loss in the OH Line	0.000 kW
12 Annual energy loss in the OH Line	54332 kWh
13 Total resistance/ phase of the OH Line	0.778 Ohms
14 Total inductive reactance/ phase of OHL	0.788 Ohms
15 Total capacitance of the line/ phase of OHL	0.027 MFD
16 Maximum sag of the overhead line	693 mm
17 Recommended spacing between conductors	1141 mm
18 Standard capacity of the selected OHL/feeder	23479 kWkm/9% rg
19 Cost of selected OHL & conductor /km in Runees	579900 per km
20 Most economical conductor's equiv Cu cs area	$65 \text{ mm}^2 2 \text{ x DOG}$
21 Least no of circuits for the given regulation	$1 \times DOG$
22 Cond. selected on the basis of max. load current	48 mm ² , 1xRACOON
	,

CALCULATION RESULTS FOR SAG AND TENSION OF OVERHEAD LINE (Data executed on 26/11/04 at 9:23:18 PM)

INPUT DATA:

Name of OHL Conductor = WOLF Overall conductor dia. in mm. = 18.13Cross sectional area in $mm^2 A = 194.04$ Weight of cond. in kg/m Wc = 0.726Ultimate Tensile strength in kg UTS = 6720Coefficient of linear exp./°C (alpha) $a = 17.78 \times 10^{-6}$ Modulus of Elast.'Initial' kg/m² E = 6260Mod. of Elasticity 'Final' $kg/m^2 E = 8158$ Normal Span of overhead line in m span = 225Ruling Span of overhead line in m span = 200Minimum temp. of conductor in $^{\circ}C = 5$ Everyday temp of conductor in $^{\circ}C = 32$ Maximum temp.of conductor in $^{\circ}C = 75$ Wind pressure in kg/sq.m. = 151.3Percentage Worst Limiting Tension = 70 % Initial Limiting Tension at no load = 35% Final Limiting Tension at no load = 25Thickness of ice layer in mm = 0Specific gravity of ice = 0.9168

CALCULATIONS:

TENSION EQUATION IN TERMS OF STRESS IS GIVEN BY:

 $f^2 = [f-(K - a \times (t2-t1) \times E)] = Z0 \times (Loading Factor)^2$

Where $Z0 = (span \times Delta)^2 \times E / 24$ t2 = Cond. temperature correspondig to stress f t1 = Cond. temperature correspondig to stress f1 å = Coefficient of linear expansion of cond. material E = Modulus of Elasticity (Final) K = f1 - (span × Delta × Loading factor)² × E / (24 × f1²) f1 = Stress corresponding to temperature t1

GIVEN STARTING CONDITION:

No Wind and 32° C Factor of Safety = 4.00

Tension T = UTS / FoS = 6720 / 4.00 = 1680 kg. Corresponding stress f1 = T/A = $1680 / (194.04 \times 10^{-6}) = 8.658 \times 10^{-6}$ kg/m² Conductor density- Delta = $Wc/A = 0.726 / [194.04 \times 10^{(-6)}] = 3741 \text{ kg/cu.m.}$ Wind load = Wind pressure × conductor dia. = $151.3 \times 0.01813 = 2.7431 \text{ kg/m.}$

Loading factor corresponding to No Wind

= Effective load on cond./ Conductor weight

- = Sqrt[(ZeroWind)² + (Weight Cond)²] / (Weight Cond)
- = Sqrt(0.² + 0.726²) / 0.726 = 1.0

Constant K = stress - (span × Delta × Loading factor)² × Mod. of Elas./ (24 × stress²)

Or $K = 8.658 \times 10^{6} - (200 \times 3741 \times 1.0)^{2} \times 8158 \times 10^{6} / (24 \times 8.658^{2} \times 10^{12})$ = 6.1189 × 10^6

Now Sag = EffectiveConductorLoad \times span² / (8 \times Tension) = Delta \times LoadingFactor \times span² / (8 \times stress) = 3741 \times 1.0 \times 225 / (8 \times 8.658 \times 10⁶) = 10.688 m (Deflected)

Vertical Sag = Delta × NoWind_LoadingFactor × span² / (8 × stress) = $3741 \times 1.0 \times 225^2$ / (8 × 8.658 × 10^6) = 2.735 m

Swing from Vertical at Full Wind Load & 36% Wind Load: Angle of swing = Arctan (Wind load/ Dead wt. of conductor) Full load swing Angle = 75.2° 36% Wind load swing Angle = 53.7°

Note: Values of Vertical & Horizontal components of Sags can be found using these angles suitably for different loading conditions.

Values of K - $a \times (t2-t1) \times E$ at 5°C, 32°C, 75°C respectively are:

 $\begin{array}{l} \text{K} - \aa \times t \times \text{E} &= 6.1189 \times 10^{\circ}6 - 17.780 \times 10^{\circ}-6 \times (5 - 32) \times 8158 \times 10^{\circ}6 \\ &= 10.0352 \times 10^{\circ}6 \\ \text{K} - \aa \times t \times \text{E} &= 6.1189 \times 10^{\circ}6 - 17.780 \times 10^{\circ}-6 \times (32 - 32) \times 8158 \times 10^{\circ}6 \\ &= 6.1189 \times 10^{\circ}6 \\ \text{K} - \aa \times t \times \text{E} &= 6.1189 \times 10^{\circ}6 - 17.780 \times 10^{\circ}-6 \times (75 - 32) \times 8158 \times 10^{\circ}6 \\ &= -.1183 \times 10^{\circ}6 \end{array}$

Value of Z0 is given by:

 $Z0 = (200 \times 3741)^2 \times 8158 \times 10^{6} / 24$ = 190.3370 × 10^18

VALUES OF Z, STRESS AND TENSION AT FULL WIND AND DIFFERENT TEMPS.

Stress is found from the Tension equation by putting values of Z and K-å.(t2-t1).E

VALUES AT FULL WIND & 5°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 3.908^2$ = 2907.5481 × 10^18

Solving the obtained equation for Stress/ Tension at 5°C: $f^2 = [f-(10.0352 \times 10^{\circ}6)] = 2907.5481 \times 10^{\circ}18$ Stress (f) at Full Wind & 5°C = 18.5158 × 10^{\circ}6 kg/m² (by iterative method) Tension at 5°C = Stress × Area = 18.5158 × 10^{\circ}6 × 194.04 × 10^{\circ}-6 = 3593 kgSag at 5°C = Delta × Loading factor × span² / (8 × stress) $= 3741 \times 3.908 \times 225^2$ / (8 × 18.516 × 10^{\circ}6) = 4.998 m

VALUES AT FULL WIND & 32°C:

 $Z = Z0 \times (\text{Load factor})^2 = 190.3370 \times 10^{18} \times 3.908^2$ = 2907.5481 × 10^18 Solving the obtained equation for Stress/ Tension at 32°C: f² = [f- (6.1189 × 10^6)] = 2907.5481 × 10^18 Stress (f) at Full Wind & 32°C = 16.6308 × 10^6 kg/m² (by iterative method)

Tension at $32^{\circ}C = Stress \times Area = 16.6308 \times 10^{6} \times 194.04 \times 10^{-6}$ = 3227 kg Sag at $32^{\circ}C = Delta \times Loading factor \times span^{2} / (8 \times stress)$ = $3741 \times 3.908 \times 225^{2} / (8 \times 16.631 \times 10^{-6})$ = 5.564 m

VALUES AT FULL WIND & 75°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 3.908^2$ = 2907.5481 × 10^18

Solving the obtained equation for Stress/ Tension at 75°C: $f^2 = [f - (-.1183 \times 10^6)] = 2907.5481 \times 10^{-18}$ Stress (f) at Full Wind & 75°C = 14.2334 × 10^6 kg/m² (by iterative method) Tension at 75°C = Stress × Area = 14.2334 × 10^6 × 194.04 × 10^{-6} = 2762 kg Sag at 75°C = Delta × Loading factor × span² / (8 × stress) = 3741 × 3.908 × 225² / (8 × 14.233 × 10^6) = 6.502 m

VALUES OF Z, STRESS AND TENSION AT 36% WIND LOAD AND DIFFERENT TEMPS.

VALUES AT 36% WIND LOAD & 5°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 1.688^2$ = 542.4875 × 10^18 Solving the obtained equation for Stress/ Tension at 5°C: $f^2 = [f-10.0352 \times 10^6] = 542.4875 \times 10^{18}$ Stress (f) at 36% Wind Load & 5°C = 13.1651 × 10^6 kg/m² (by iterative method) Tension at 5°C = Stress × Area = 13.1651 × 10^6 × 194.04 × 10^-6 = 2555 kg Sag at 5°C = Delta × Loading factor × span² / (8 × stress) = 3741 × 1.688 × 225² / (8 × 13.165 × 10^6) = 3.036 m

VALUES AT 36% WIND LOAD & 32°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 1.688^2$ = 542.4875 × 10^18

Solving the obtained equation for Stress/ Tension at 32°C: $f^2 = [f-6.1189 \times 10^{\circ}6] = 542.4875 \times 10^{\circ}18$ Stress (f) at 36% Wind Load & 32°C = 10.7837 × 10^{\circ}6 kg/m² (by iterative method) Tension at 32°C = Stress × Area = 10.7837 × 10^{\circ}6 × 194.04 × 10^{\circ}-6 = 2092 kg Sag at 32°C = Delta × Loading factor × span² / (8 × stress) = 3741 × 1.688 × 225² / (8 × 10.784 × 10^{\circ}6) = 3.707 m

VALUES AT 36% WIND LOAD & 75°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 1.688^2$ = 542.4875 × 10^18

Solving the obtained equation for Stress/ Tension at 75°C: $f^2 = [f_{-}.1183 \times 10^{\circ}6] = 542.4875 \times 10^{\circ}18$ Stress (f) at 36% Wind Load & 75°C = 8.1164 × 10^{\circ}6 kg/m² (by iterative method) Tension at 75°C = Stress × Area = 8.1164 × 10^{\circ}6 × 194.04 × 10^{\circ}-6 = 1575 kg Sag at 75°C = Delta × Loading factor × span² / (8 × stress) = 3741 × 1.688 × 225² / (8 × 8.116 × 10^{\circ}6) =4.925 m

VALUES OF Z, STRESS AND TENSION AT NO WIND LOAD AND DIFFERENT TEMPS.

VALUES AT NO WIND LOAD & 5°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 1.0^2$ = 190.3370 × 10^18

Solving the obtained equation for Stress/ Tension at 5°C: $f^2 = [f-10.0352 \times 10^{6}] = 190.3370 \times 10^{18}$ Stress (f) at NO Wind Load & 5°C = 11.4794 × 10^{6} kg/m² (by iterative method) Tension at 5°C = Stress × Area = 11.4794 × 10^{6} × 194.04 × 10^{-6} = 2227 kg Sag at 5°C = Delta × Loading factor × span² / (8 × stress) = $3741 \times 1.0 \times 225^2$ / (8 × 11.479 × 10^6) = 2.063 m

VALUES AT NO WIND LOAD & 32°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 1.0^{2}$

= 190.3370 × 10^18 Solving the obtained equation for Stress/ Tension at 32°C: $f^2 = [f-6.1189 \times 10^6] = 190.3370 \times 10^{18}$ Stress (f) at NO Wind Load & 32°C = 8.6580 × 10^6 kg/m² (by iterative method) Tension at 32°C = Stress × Area = 8.6580 × 10^6 × 194.04 × 10^-6 = 1680 kg Sag at 32°C = Delta × Loading factor × span² / (8 × stress) = 3741 × 1.0 × 225² / (8 × 8.658 × 10^6) = 2.735 m

VALUES AT NO WIND LOAD & 75°C:

 $Z = Z0 \times (Load factor)^2 = 190.3370 \times 10^{18} \times 1.0^2$ = 190.3370 × 10^18

Solving the obtained equation for Stress/ Tension at 75°C: $f^2 = [f_{-}.1183 \times 10^{\circ}6] = 190.3370 \times 10^{\circ}18$ Stress (f) at NO Wind Load & 75°C = 5.7131 × 10^{\circ}6 kg/m² (by iterative method) Tension at 75°C = Stress × Area = 5.7131 × 10^{\circ}6 × 194.04 × 10^{\circ}-6 = 1109 kgSag at 75°C = Delta × Loading factor × span² / (8 × stress) $= 3741 \times 1.0 \times 225^2 / (8 \times 5.713 \times 10^{\circ}6)$ = 4.144 m

CHECKING PARAMETERS WITH INITIAL MODULUS OF ELASTICITY AT NO WIND LOAD AND EVERYDAY TEMPERATURE

VALUES AT NO WIND LOAD & 32°C:

 $Z = Z0 \times (\text{Load factor})^2$ = 190.3370 × 10^18 × 1.0² × 6260 × 10^6 / (8158 × 10^6) = 146.0541 × 10^18

Solving the obtained equation for Stress/ Tension at 32°C: $f^2 = [f-.0000 \times 10^{\circ}6] = 146.0541 \times 10^{\circ}18$ Stress (f) at NO Wind Load & 32°C = 5.2663 × 10^{\circ}6 kg/m² (by iterative method) Tension at 32°C = Stress × Area = 5.2663 × 10^{\circ}6 × 194.04 × 10^{\circ}-6 = 1022 kgSag at 32°C = Delta × Loading factor × span² / (8 × stress) $= 3741 \times 1.0 \times 225^2$ / (8 × 5.266 × 10^{\circ}6) = 4.496 m

CHECKING PARAMETERS WITH INITIAL MODULUS OF ELASTICITY AT FULL WIND LOAD AND EVERYDAY TEMPERATURE

VALUES AT FULL WIND LOAD & 32°C:

 $Z = Z0 \times (\text{Load Factor})^{2}$ = 190.3370 × 10^18 × 3.908² × 6260 × 10^6 / (8158 × 10^6) = 2231.0923 × 10^18 Solving the obtained equation for Stress/ Tension at 32°C:

solving the obtained equation for stress/ refision at 52°C. $f^2 = [f-.0000 \times 10^{\circ}6] = 2231.0923 \times 10^{\circ}18$ Stress (f) at FULL Wind Load & 32°C = 13.0669 × 10^{\circ}6 kg/m² (by iterative method) Tension at 32°C = Stress × Area = 13.0669 × 10^{\circ}6 × 194.04 × 10^{\circ}-6 = 2535 kg Sag at 32°C = Delta × Loading factor × span² / (8 × stress) = 3741 × 3.908 × 225² / (8 × 13.067 × 10^{\circ}6) = 7.082 m

Calculations generated by Elect 7.05 from SofexIndia

CALCULATION RESULTS FOR ELECTRICITY BILL (Data executed on 26/11/04 at 9:27:47 PM)

INPUT DATA:

Power Supply Company = ComF Bill No. = 51040200050 Bill Cycle = January '2004 Payment made = Before due Date Due Date = 27/03/2004Meter ID No. = BH-NJ-TVMSEMWBU02088 Voltage = 11000. Multiplic. Factor (kWh) = 6.00Mult. Factor (MaxDem) = 6.00Contract Demand kVA = 400Maximum Demand kW = 214.00Maximum Demand kVA = 350.00Opening Reading = 10390.00Closing Reading = 14805.00Total Hours = 792.00Interruption Hrs. = 2.98Rebate Hours = 0.00Domestic Units = 0Industrial Units = 26490Commercial units = 0Exempted Units = 0

Ind. Duty Rate (%) = 7.50Dom. Duty Rate (%) = 10.00Enr.Tariff (Rs./Unit) = 3.0743Intrm. Ch. (Re./Unit) = 0.06Meter Rent = 1200.00Avail compens. (%) = 1.00Rebate/ kWh on Energy Charge for Timely Payment (paise) = 10 Penalty/ kWh on Energy Charge for Late Payment (paise) = 10 Rate of Surcharge for Late Payment/month or part (%) = 1.25Penalty on shortfall of cons. below 20% LF (Paise/kWh) = 20 Rebate on excess cons./kWh above 80% LF in paise = 20 Rate of Penalty for Exceeding CD on Net Energy Bill (%) = 1CALCULATIONS: (Note: Units & Amounts have been converted to long integer) kVA Contract Demand taken for calculations = 400 kVAUnits consumed = Diff. in Open-Close readings \times MF $=(14805 - 10390) \times 6$ $= 4415 \times 6$ = 26490Power Factor = Maximum kW Demand/ Maximum kVA Demand = 214 / 350= 0.61Load Factor = Units consumed \times 100 / (CD \times Available Hours \times PF) $= 26490 \times 100 / [400 \times (792.0 - 2.98) \times 0.610]$ = 13.76Energy Charges = Units consumed × Unit Energy Charge $= 26490 \times 3.0743$ = 81438.00Load Factor Penalty Charge for LF of 13.76 Panalty = Rate of penalty \times CD \times (20 - LF) \times Available Hours \times PF/100 $= 0.20 \times 400 \times (20 - 13.76) \times (792.0 - 2.98) \times 0.610/100$ = 2403.00**REBATE / PENALTY FOR TIME OF PAYMENT** Since payment made is Before due Date Rate of rebate is = 0.1Rabate for timely payment = Rebate Rate × Units Consumed $= 0.1 \times 26490$ = 2649.00TOTAL NET CHARGE: Net Energy Charge = Energy Ch. + LF Penalty - Pay Time Rebate = 81438.00 + 2403.00 - 2649.00= 81192.00INTERIM CHARGE INDUSTRIAL+COMMERCIAL+DOMESTIC: Interim Indusrial Energy Charge = Industrial Units × Rate $= 26490 \times 0.06$

= 1589.00Interim Domestic Energy Charge = Domestic Units × Rate $= 0 \times 0.06$ = 0.00Interim Commercial Energy Charge = Commercial Units × Rate $= 0 \times 0.06$ = 0.00TOTAL Interim Charges = 1589.00 + 0.00 + 0.00= 1589.00COMPENSATION FOR LOW AVAILABILTY OF POWER: Power Availability Factor = (Total Hours - Interruption) \times 100/ Total Hours $=(792 - 2.98) \times 100 / 792$ = 99.62Since, Availability is more than 90% Compensation = 0.00**GOVERNMENT DUTY:** Duty on Ind. Consumption = Ind. Duty Rate × Ind. Units Consumed × (Unit Energy cost - Rebate for Timely payment) $= 7.5 \times 26490 \times (3.0743 - 0.1) / 100$ = 5909.00Similarly: Duty on Dom. Cons. = $10 \times 0 \times (3.0743 - 0.1) / 100$ = 0.00And, Duty on Com. Cons. = $10 \times 0 \times (3.0743 - 0.1) / 100$ = 0.00Total duty = 5909.00**INTERIM DUTY:** Interim Duty on Ind. Cons. = Interim Ind. Duty Rate × Interim Ind. Charge = 7.5 × 1589.00 / 100 = 119.00Similarly: Duty on Dom. Cons. = $10 \times 0.00 / 100$ = 0.00And. Duty on Com. Cons. = $10 \times 0.00 / 100$ = 0.00Total Inerim Duty = 119.00 + 0.00 + 0.00= 119.00PENALTY ON MAXIMUM DEMAND Penalty on Demand = Penalty Rate × Net Energy Charge Since MD < CDPenalty on Demand = 0×81192.00 = 0.00

86

TOTAL PAYABLE BEFORE DATE

Total = Net Charge + Total Interim + Total Duty + Interim Duty+ Meter Rent + Demand Penalty - Availability Compensation= 81192.00 + 1589.00 + 5909.00+ 119.00 + 1200 + 0.00 - 0.00= 90009.00

SURCHARGE FOR DELAYED PAYMENT Delay Surcharge = 0.00

Calculations generated by Elect 7.05 from SofexIndia

PERCENTAGE IMPEDANCE CALCULATION OF TRANSFORMERS CALCULATION RESULTS FOR LOSSES AND IMPEDANCE VOLTAGE OF TRANSFORMER (Data executed on 26/11/04 at 9:35:26 PM)

INPUT DATA:

Transformer Capacity in kVA = 100 Rated value of High Voltage in kV = 11 Rated value of Low Voltage in kV = 0.433 Reference Temp. for Transf. resistance in $^{\circ}C = 24$ Measured value of High Volt. Resist. in Ohms = 20.2 Measured value of LV Resist. in milli-Ohms = 20.3 Temp. for which values are required in $^{\circ}C = 75$ Impedance Voltage at ambient temp.in Volts = 488 Average measured value of HV current in A = 5.26 Measured Load Losses in Watts = 1484 Winding material of Transformer = Aluminium

CALCULATIONS:

HV rated current Ip = Rated kVA / $(1.732 \times \text{Voltage})$ = 100 / (1.732×11) = 5.2 Amps.

LV rated current Is = Rated kVA/($1.732 \times$ Voltage) = 100 / (1.732×0.433) = 133.3 Amps.

I²R loss in HV windings at 24°C:

 $= 3 \times Ip^2 \times Rp \times 0.5$ = 3 × 5.2² × 20.2 × 0.5 = 834.7 Watts

I²R loss in LV windings at 24°C: = $3 \times Is^2 \times Rs \times 0.5 / 1000$ = $3 \times 133.3^2 \times 20.3 \times 0.5 / 1000$

= 541.4 Watts Total I²R loss of transformer at 24°C: = 834.7 + 541.4 Watts = 1376.1 Watts Total I²R loss of transformer at 75°C: $= (225 + T2) \times I^2 R$ loss at T1 °C / (225 + T1) $= (225 + 75) \times 1376.1 / (225 + 24)$ = 1657.9 Watts Full load loss at 24°C: = $(Ip / Measured HV Current Ipm)^2$ × Measured load loss $= (5.25 / 5.26)^2 \times 1484$ = 1477.6 Watts Stray losses at 24°C: = Full load loss - Total I²R loss at ref. temp. = 1477.6 - 1376.1 = 101.5 Watts Stray losses at 75°C: $= (225 + T2) \times \text{Stray losses at } 24^{\circ}\text{C} / (225 + T2)$ $= (225 + 75) \times 101.5 / (225 + 75)$ = 84.3 Watts Full load loss at 75°C: = Total I²R loss at 75°C + Stray losses at 75°C = 1657.9 + 84.3= 1742.2 Watts Impedance voltage at 24°C: = Rated HV Current \times Imp. Voltage at 24°C / Measured HV Current at 24°C = Ip \times Imp. Voltage at 24°C / Im $= 5.2 \times 488 / 5.3$ = 486.9 Volts Percentage Imp. Voltage at 24°C: = Imp. Voltage at $24^{\circ}C \times 100$ / HV in Volts = 486.9 × 100 / 11000 = 4.43 % Percentage Resistance at 24°C: = Full load loss at $24^{\circ}C \times 100$ / Rated kVA $= 1477.6 \times 100 / (100 \times 1000)$ = 1.48 %

Percentage Reactance:

= Root($4.43^2 - 1.48^2$) = 4.17%Percentage Resistance at 75°C: = Full load loss at 75°C × 100 / Rated kVA = $1742.2 \times 100 / (100 \times 1000)$ = 1.74%Percentage Impedance at 75°C: = Root(Reactance²+Resistance²) = Root($4.17^2 - 1.74^2$)

= Root(Impedance²-Resistance²)

= 4.52 %

Calculations generated by TransElect[™] from SofexIndia[™]

TRANSFORMERS - PERCENTAGE IMPEDANCE

SI. NO.	DESCRIPTION OF OUTPUT RESULTS	Result Value	Unit
1	Rated Current of High Voltage side	5.2	Amps.
2	Rated Current of Low Voltage side	133.3	Amps.
3	I ² R loss in HV windings at 24°C	834.7	Watts
4	I ² R loss in LV windings at 24°C	541.4	Watts.
5	Total I ² R loss of transformer at 24°C	1376.1	Watts
6	Total I ² R loss of transformer at 75°C	1657.9	Watts
7	Full load loss at 24°C	1477.6	Watts.
8	Stray losses at 24°C	101.5	Watts
9	Stray losses at 75°C	84.3	Watts
10	Full load loss at 75°C	1742.2	Watts.
11	Impedance voltage at 24°C	486.9	Volts
12	Percentage Imp. Voltage at 24°C	4.43	%
13	Percentage Resistance at 24°C	1.48	%
14	Percentage Reactance	4.17	%
15	Percentage Resistance at 75°C	1.74	%
16	Percentage Impedance at 75°C	4.52	%

TRANSFORMER - INPUT VALUES

1	Transformer winding material	Aluminium
2	Transformer Capacity in kVA	100
3	Rated value of High Voltage in kV	11
4	Rated value of Low Voltage in kV	0.433
5	Reference Temp. for Transf. resistance in °C	24
6	Measured value of High Volt. Resist. in Ohms	20.2
7	Measured value of LV Resist. in milli-Ohms	20.3
8	Temp. for which values are required in °C	75
9	Impedance Voltage at ambient temp.in Volts	488
10	Average measured value of HV current in A	5.26
11	Measured Load Losses in Watts	1484

Generated by TransElect on 26/11/04

91 CABLE SELECTION - RECOMMENDED CABLE

S.N.	Description	Value	Remarks
1	Required number of the cable lengths in parallel	1	
2	Cross Sectional Area of the selected cable sq.mm.	150	
3	Percentage voltage regulation (%)	0.914	
4	Voltage drop in the cable/phase in Volts	17.6	
5	Annual energy loss in the selected cable in kWh	39320	
6	Percentage line efficiency of the cable (%)	99.1	
7	Resistance of the cable/phase/conductor in ohms	0.0796	
8	Ind. reactance of the cable/phase/conductor in ohms	0.0386	
9	Capacitance of each cable/phase in MFD	0.3332	
10	Total losses in the cable (Average)- kW component	4.489	
11	Total losses in the cable (Maximum)- kW component	9.538	
12	Total dielectric losses in the cable- Watt component	8	
13	Total sheath loss in the cable- Watt component	88	
14	Sending end power factor	0.88	
15	Sending end voltage (L-L) in kV	3.33	
16	Calculated RMS current based on LF & FF in Amperes	135.6	
17	Maximum load current in Amperes	198.8	
18	Derating factor due to ambient temperature	0.953	
19	Derating factor due to ground temperature	1	
20	Derating factor due to depth of cable laying	0.994	
21	Derating factor due to soil resistivity	1.03	

CABLE SELECTION - BASED ON FAULT CURRENT

S.N.	Description	Value	Remarks
1	Required number of the cable lengths in parallel	1	
2	Cross Sectional Area of the selected cable sq.mm.	120	
3	Percentage voltage regulation (%)	1.048	
4	Voltage drop in the cable/phase in Volts	20.3	
5	Annual energy loss in the selected cable in kWh	46483	
6	Percentage line efficiency of the cable (%)	98.9	
7	Resistance of the cable/phase/conductor in ohms	0.0942	
8	Ind. reactance of the cable/phase/conductor in ohms	0.0392	
9	Capacitance of each cable/phase in MFD	0.3164	
10	Total losses in the cable (Average)- kW component	5.306	
11	Total losses in the cable (Maximum)- kW component	11.277	
12	Total dielectric losses in the cable- Watt component	7.6	
13	Total sheath loss in the cable- Watt component	104	
14	Sending end power factor	0.881	
15	Sending end voltage (L-L) in kV	3.335	
16	Calculated RMS current based on LF & FF in Amperes	135.6	
17	Maximum load current in Amperes	198.8	
18	Derating factor due to ambient temperature	0.953	
19	Derating factor due to ground temperature	1	
20	Derating factor due to depth of cable laying	0.994	
21	Derating factor due to soil resistivity	1.03	

CABLE SELECTION - BASED ON RMS CURRENT

S.N.	Description	Value	Remarks
1	Required number of the cable lengths in parallel	1	
2	Cross Sectional Area of the selected cable sq.mm.	150	
3	Percentage voltage regulation (%)	0.914	
4	Voltage drop in the cable/phase in Volts	17.6	
5	Annual energy loss in the selected cable in kWh	39320	
6	Percentage line efficiency of the cable (%)	99.1	
7	Resistance of the cable/phase/conductor in ohms	0.0796	
8	Ind. reactance of the cable/phase/conductor in ohms	0.0386	
9	Capacitance of each cable/phase in MFD	0.3332	
10	Total losses in the cable (Average)- kW component	4.489	
11	Total losses in the cable (Maximum)- kW component	9.538	
12	Total dielectric losses in the cable- Watt component	8	
13	Total sheath loss in the cable- Watt component	88	
14	Sending end power factor	0.88	
15	Sending end voltage (L-L) in kV	3.33	
16	Calculated RMS current based on LF & FF in Amperes	135.6	
17	Maximum load current in Amperes	198.8	
18	Derating factor due to ambient temperature	0.953	
19	Derating factor due to ground temperature	1	
20	Derating factor due to depth of cable laying	0.994	
21	Derating factor due to soil resistivity	1.03	

CABLE SELECTION - BASED ON VOLTAGE REGULATION

S.N.	Description	Value	Remarks
1	Required number of the cable lengths in parallel	1	
2	Cross Sectional Area of the selected cable sq.mm.	25	
3	Percentage voltage regulation (%)	3.934	
4	Voltage drop in the cable/phase in Volts	84	
5	Annual energy loss in the selected cable in kWh	207054	
6	Percentage line efficiency of the cable (%)	95.2	
7	Resistance of the cable/phase/conductor in ohms	0.42	
8	Ind. reactance of the cable/phase/conductor in ohms	0.0482	
9	Capacitance of each cable/phase in MFD	0.2156	
10	Total losses in the cable (Average)- kW component	23.636	
11	Total losses in the cable (Maximum)- kW component	50.267	
12	Total dielectric losses in the cable- Watt component	5.2	
13	Total sheath loss in the cable- Watt component	463.5	
14	Sending end power factor	0.887	
15	Sending end voltage (L-L) in kV	3.436	
16	Calculated RMS current based on LF & FF in Amperes	135.6	
17	Maximum load current in Amperes	198.8	
18	Derating factor due to ambient temperature	0.953	
19	Derating factor due to ground temperature	1	
20	Derating factor due to depth of cable laying	0.994	
21	Derating factor due to soil resistivity	1.03	

CABLES VOLTAGE REGULATION & DROP

S.N.	Description	Unit	OUTPUT
1	Receiving end load shared by cable path	kW	150
2	Sending end voltage of the cable (L-L)	kV	3.302
3	Sending end current/ phase of the system	Amps.	30.36
4	Sending end power factor of the system	Factor	0.8644
5	Percentage voltage regulation of the system	%	0.05
6	Annual energy losses in the cable(s)	kWh	335
7	Total losses (max. in eq. kW) in the system	kW	0.08
8	Total line losses (rms eq. kW) in the system	kW	0.04
9	Resist./phase/cond. of the cable at 75°C	Ohms	0.0295
10	Inductive react./phase/cond. of the cable	Ohms	0.0074
11	Line efficiency of the cable feeding system.	%	99.95
12	Receiving end current/ phase in cable(s)	Amps.	30.52
13	Form factor of the system.	Factor	1.22
14	Total Capacitance/ phase of the cable(s)	MFD	0.5
15	Receiving end capacitor current	Amps.	0.05
16	Cable line mid point capacitor current	Amps.	0.2
17	Sending end capacitor current	Amps.	0.05
18	Capacitive react./phase/cond. of the cable	k.Ohms	6.4
19	Equivalent impedance/ phase of cable(s)	Ohms	0.0305
20	Type of conductor material of the cable	Туре	cu
21	Cross sectional area of cable(s)	sq.mm.	70
22	Current carrying capacity of cable(s)	Amps.	165
23	Voltage DROP per phase in the cable(s)	Volts	0.9

DISPLAY OF 3 SELECTED FIELDS DATA OF 8 METERS (21 FOUND)

GN	MotorNo	BillCyclo	Bill Number	Contract	Units_	Tot Bill
311	Meterino	Біпсусіе	Bill Nulliber	Demand	cons	тос_вш
1	NKC-TVMSEMWBB02626	1/02/04	51040200156	2000	772560	2521892
2	LKC-TVMSEMWBB02627	1/02/04	51040200158	1600	479232	1570458
3	CLJ-TVMSEMWBU02081	1/02/04	51040200056	750	224436	734558
4	BH-RJ-TVMSEMWBD01710	1/02/04	51040200053	1000	370584	1211400
5	BH-PJ-TVMSEMWBB00671	1/02/04	51040200057	850	268696	879033
6	BH-NJ-TVMSEMWBU02088	1/02/04	51040200159	1100	349500	1146270
7	HRP-TVMSEMWBB02637	1/02/04	51040200048	1300	413860	1364850
8	BH-PJ-TVMSEMWBB00671	1/03/04	51040300038	850	272336	890894
9	LKC-TVMSEMWBB02627	1/03/04	51040300148	1600	597960	1957733
10	BH-RJ-TVMSEMWBD01710	1/03/04	51040300034	1000	445008	1454149
11	NKC-TVMSEMWBB02626	1/03/04	51040300146	2000	899160	2934832
12	HRP-TVMSEMWBB02637	1/03/04	51040300009	1300	461920	1521615
13	CLJ-TVMSEMWBU02081	1/03/04	51040300037	750	271020	886509
14	BH-RJ-TVMSEMWBD01710	1/01/04	51040100081	1000	403092	1317438
15	BH-PJ-TVMSEMWBB00671	1/01/04	51040100089	850	271144	887019
16	BH-NJ-TVMSEMWBU02088	1/03/04	51040300149	1100	389870	1277915
17	HRP-TVMSEMWBB02637	1/01/04	51040100166	1300	475100	1564607
18	NKC-TVMSEMWBB02626	1/01/04	51040100037	2000	867360	2831085
19	CLJ-TVMSEMWBU02081	1/01/04	51040100087	750	222136	727056
20	BH-NJ-TVMSEMWBU02088	1/01/04	51040100163	1100	401870	1317095
21	LKC-TVMSEMWBB02627	1/01/04	51040100189	1600	399816	1323303
	GRAND	TOTAL		1229	9256660	30319711
					TC	TAL

OHL COST BREAK-UP

S.N.	ITEM DESCRIPTION	UNIT	QNTY.	UNIT RATE	AMOUNT IN Rs.
1	ACSR 'DOG ' Conductor having eq. Al csa=105 mm ²	km	3.3	42849	141404
2	Rail Pole (52kg/m) '9 metres' height	no.	12	16050	192600
3	11kV Disc Type Insulators	no.	36	963	34668
4	Line Hardwares- brackets/clamps etc.	set	12	368	4424
5	7x2.59 mm Galvanized Earth Wire	km	1.1	17922	19715
6	PCC Work at Pole/ Tower Sites	no.	12	553	6636
7	Earthings at Pole/ Tower Sites	no.	2	986	1972
	SUB-TOTAL				401419
8	Transportation, erection, bracket and insulator fitting, wire stranding, supervision etc.	LS	25%	401419	100354
	GRAND-TOTAL				501774

Rupees Fifty Lakh One Thosand Seven Hundred SeventyFour Only.

95

POWER BALANCE FOR UNDERGROUND PROJECT

SUPERPOSITION METHOD

SI. No.	Description	Connected Load in kW	Working Load in kW	Demand Factor	Power Factor (cos ø)	tan ø	Apparent load in kW	Reactive load in kVAr	Maximum Demand in kVA	Running Hours/ day	Annual Working days	Annual Consump. In MkWh
1	Vertical Transport	400	200	0.80	0.85	0.62	160	99	188	10	300	0.480
2	Pumping	1200	1000	0.80	0.85	0.62	800	496	941	16	365	4.672
3	Surface Lighting	300	100	0.90	0.90	0.48	90	44	100	12	365	0.394
4	Underground lighting	200	200	0.90	0.90	0.48	180	87	200	24	365	1.577
5	Colony	750	500	0.80	0.85	0.62	400	248	471	10	365	1.460
6	Direct Haulage	800	600	0.80	0.80	0.75	480	360	600	15	300	2.160
7	Endless Haulage	70	35	0.80	0.80	0.75	28	21	35	15	300	0.126
8	Belt Conveyor	100	70	0.80	0.75	0.88	56	49	75	15	300	0.252
9	СНР	200	150	0.80	0.80	0.75	120	90	150	12	300	0.432
10	Compressor	200	100	0.60	0.70	1.02	60	61	86	10	300	0.180
	Sub-Total	4220	2955	0.80	0.84	0.66	2374	1555	2838			11.733
	Superposition factors											
	0.925	For kW										
	0.964	For kVAr	2955	0.74	0.83	0.68	2196	1499	2659			
	Improving PF upto											
	0.95		2955	0.74	0.95	0.33	2196	722	2311			

Capacitor Bank required for power factor improvement in kVAr	260 x 3 kVAr
Required Transformer Capacity in kVA	1387 x 2 kVA
Selected Transformer Capacity in kVA	1600 x 2 kVA
Percentage Voltage Impedance of the Selected Transformer	6.25 %

96

POWER BALANCE FOR UNDERGROUND PROJECT

DIVERSITY FACTOR METHOD

SI. No.	Description	Connected Load in kW	Working Load in kW	Demand Factor	Power Factor (cos ø)	tan ø	Apparent load in kW	Reactive load in kVAr	Maximum Demand in kVA	Running Hours/ day	Annual Working days	Annual Consump. In MkWh
1	Vertical Transport	400	200	0.8	0.85	0.620	160	99	188	10	300	0.480
2	Pumping	1200	1000	0.8	0.85	0.620	800	496	941	16	365	4.672
3	Surface Lighting	300	100	0.9	0.9	0.484	90	44	100	12	365	0.394
4	Underground lighting	200	200	0.9	0.9	0.484	180	87	200	24	365	1.577
5	Colony	750	500	0.8	0.85	0.620	400	248	471	10	365	1.460
6	Direct Haulage	800	600	0.8	0.8	0.750	480	360	600	15	300	2.160
7	Endless Haulage	70	35	0.8	0.8	0.750	28	21	35	15	300	0.126
8	Belt Conveyor	100	70	0.8	0.75	0.882	56	49	75	15	300	0.252
9	СНР	200	150	0.8	0.8	0.750	120	90	150	12	300	0.432
10	Compressor	200	100	0.6	0.7	1.020	60	61	86	10	300	0.180
	Sub-Total	4220	2955	0.80	0.84	0.655	2374	1555	2838			11.733
Taking Diversity factor for kW and kVAr as 1.23			2955	0.65	0.84	0.655	1930	1264	2307			
Impro	I oving PF upto 0.95		2955	0.65	0.95	0.329	1930	634	2032			

Capacitor Bank required for power factor improvement in kVAr	210 x 3 kVAr
Required Transformer Capacity in kVA	1219 x 2 kVA
Selected Transformer Capacity in kVA	1250 x 2 kVA
Percentage Voltage Impedance of the Selected Transformer	5 %

RESULTS OF SAG TENSION CALCULATIONS

Temp.	Description of OHL	Cond.+Ice	Wind load	Eqv. load	Stress	Tension Tension SagDefl Sag		SagVert	SagHrz	Remarks			
in °C	/condition	kg/m.	kg/m.	kg/m.	kg/sq.cm.	in kg	% UTS	in mm	in mm	in mm			
5	WITH FULL WIND LOAD	0.726	2.743	2.838	1852	3593	53.5	10688	2735	10332	Ok, Tension within the limit of 70%.		
5	WITH 36% WIND LOAD	0.726	0.988	1.226	1317	2555	38	3036	1798	2446	Swing from vertical = 75.2° at full wind		
5	WITHOUT WIND LOAD	0.726	0	0.726	1148	2227	33.1	2063	2063	0	Swing from vertical = 53.7° at 36% wind		
											** Assumed Factor of Safety = 4.00 at 25% UTS		
32	WITH FULL WIND LOAD	0.726	2.743	2.838	1663	3227	48	5564	1424	5379			
32	WITH 36% WIND LOAD	0.726	0.988	1.226	1078	2092	31.1	3707	2196	2986			
32	WITHOUT WIND LOAD	0.726	0	0.726	866	1680	25.0**	2735	2735	0	Ok, Tension within the limit of 25%.		
75	WITH FULL WIND LOAD	0.726	2.743	2.838	1423	2762	41.1	6502	1663	6285			
75	WITH 36% WIND LOAD	0.726	0.988	1.226	812	1575	23.4	4925	2917	3968			
75	WITHOUT WIND LOAD	0.726	0	0.726	571	1109	16.5	4144	4144	0			
32	No wind load (Initial)	0.726	0	0.726	527	1022	15.2	4496	4496	0	Ok, Tension within the limit of 35%.		
32	Initial with wind load	0.726	2.743	2.838	1307	2535	37.7	7082	1812	6846			
	INPUT DATA	VALUE								VALUE	INPUT DATA		
	Conductor name	WOLF								6260	Initial Modulus of Elasticity in kg/m ²		
	Conductor dia. in mm.	18.13								8158	Final Modulus of Elasticity in kg/m ²		
	Cond. CS Area in mm ²	194.04								151.3	Wind pressure in kg/m ²		
	Conductor Wt. in kg/m	0.726								70	% Limiting tension (Worst at given °C)		
	Conductor UTS in kg	6720								35	% Initial limiting tension		
	OHL normal span in m	225								25	% Limiting tension (No wind at given °C)		
	OHL ruling span in m	200								0	Thickness of ice in mm		
	Minimum temp. in °C	5								0.9168	Specific gravity of ice		
	Everyday temp. in °C	32								17.78	x 10^(-6) Coeff. of linear exp./°C		
	Maximum temp. in °C	75	Generated by Elect 7.05 on 26/11/04 at 9:21:55 PM										

ENERGY BILL ANALYSIS TREND OF BILL AMOUNT OF SINGLE METER - GRAPHICAL VIEW

COMPARATIVE VIEW OF UNITS CONSUMED DURING A PERIOD BY NUMBER OF METERS - GRAPHICAL VIEW

COMPARATIVE VIEW OF SELECTED FIELDS AND METERS IN A GIVEN MONTH – GRAPHICAL DISPLAY

MOST ECONOMICAL CONDUCTOR SELECTION VARIATION OF CONDUCTOR COST VS ENERGY LOSS FOR A GIVEN POWER TRANSMISSION THROUGH OHL

PROPERTIES OF OVERHEAD LINE CONDUCTORS

Conductors are formed with a number of stranded aluminium wires. To strengthen the conductor, steel wires are used in the core of the strands. It is always better to use steel wires in the inner section because of the lower current density in the inner part, compared to outer part of the conductor section. The higher resistivity of steel thus has a very little effect on voltage drop and regulation.

Two types of conductors are in common use:

- 1. ACSR (Aluminium Conductor Galvanised Steel Reinforced)
- 2. AAAC (All Alloy Aluminium Conductor)

One more type AAC (All Aluminium Conductor) is also in use, but is being replaced by AAAC due to superior quality of AAAC over AAC.

In ACSR Conductors, normally the core is made up of steel wires to strengthen the tensile properties. Numbers of layers are then placed over this core to form the desired size of conductors. There are standards for the size of wire sections both of steel and aluminium. In normal practice, both steel and aluminium wires of conductors are kept of the same size or else the outer diameter of steel core is approximately equal to diameter of individual aluminium wires. This is done to reduce the spacing factor of the conductor i.e. to make the conductor more compact.

The maximum number of wires that can be placed over a layer is given by 6n, where n is layer number. The constant 6 is the integer value of 2π . Thus; wire arrangement in the section of a 4-layer conductor will be as under:

CORE	-	1
LAYER 1	-	6
LAYER 2	-	6x2
LAYER 3	-	6x3
LAYER 4	-	6x4
TOTAL	-	61

In AAAC type overhead line conductors, the construction is same as above, except the core, which is also of aluminium instead of steel. The breaking load/ tensile strength (UTS) of AAAC is comparable to ACSR, rather it is better than ACSR.

The resistance and current density qualities of AAAC are also superior to those of same size of ACSR. The only poor part of AAAC is that it can be cut more easily than ACSR.

Consider the following variables for further discussion:

 n_a = Number of Aluminium wires

 n_s = Number of Steel wires

 d_a = Outer diameter of Aluminium wires in mm

 d_s = Outer diameter of Steel wires in mm

1. OVERALL RADIUS OF CONDUCTOR

For a conductor made up of a given number of Aluminium/ Steel wires of given outer diameters, the overall radius r_d of the conductor so formed is given by:

 $r_d = (d_s + 2d_a)/2$ For 1 steel and 6 aluminium stranded conductor (7 Strands) $r_d = (3d_s + 2d_a)/2$ For 7 steel and 6 aluminium stranded conductor (13 Strands) $r_d = (3d_s + 4d_a)/2$ For 7 steel and 30 aluminium stranded conductor (37 Strands) $r_d = (3d_s + 6d_a)/2$ For 7 steel and 54 aluminium stranded conductor (61 Strands)

These empirical relations are required to assess the inductance and capacitance of the overhead line comprised of these conductors.

The above relations may be generalized for n layers conductor over the central core, the diameters of component wires being equal:

$$r_d = (2n+1) \times d_a / 2$$

2. EQUIVALENT ALUMINIUM AREA (eqa)

Equivalent aluminium area of the composite conductor formed of Aluminium and steel may be given by:

$$eqa = Total _Al_Area + Total_Steel_Area \times \left(\frac{Al_Re\,sistivity}{Steel_Re\,sistivity}\right)$$

or
$$eqa = ala + Steel_Area \times \left(\frac{\rho_{al}}{\rho_{s}}\right)$$

3. NOMINAL EQUIVALENT COPPER AREA (eqc)

To find the nominal equivalent copper area, the first step is to convert the equivalent aluminium area to equivalent copper and then set this value to the nearest standard value as specified in standards:

 $eqc = \frac{eq _Al_area \times \text{Re sistivity}_Copper}{\text{Re sistivity}_Alu\min ium}$

or
$$eqc = eqa \times \left(\frac{\rho_{cu}}{\rho_{al}}\right)$$

4. CURRENT CARRYING CAPACITY (CCC) & CURRENT DENSITY

The current density in a section of conductor is not uniform. The practical values of current density show it to vary exponentially. The author has arrived at the following empirical relationships for current density in different types and cross sectional area of conductors:

CURRENT DENSITY CURVES FOR ACSR & AAAC CONDUCTORS

Empirical relation of the ACSR curve (shown black) is given by:

 $\log(\delta) = 0.8642 - 0.2385 \times \log(eqa)$ or $\delta = e^{0.8642 - 0.2385 \times \log(eqa)}$

Empirical relation of the AAAC curve (shown pink) is given by:

$$log(\delta) = 1.137 - 0.3468 \times log(eqa)$$

or $\delta = e^{1.137 - 0.3468 \times log(eqa)}$

Based on the above empirical relations of the current density, the current carrying capacity of different size of conductors may be calculated out as under:

$$ccc = Cond _Al_equiv_area \times Current_density$$

or
$$ccc = eqa \times e^{0.8642 - 0.2385 \times \log(eqa)}$$
For ACSR
And
$$ccc = eqa \times e^{1.137 - 0..3468 \times \log(eqa)}$$
For AAAC

5. **RESISTANCE (R at 20°C)**

ACSR CONDUCTORS

Let Steel wires= ns numbers each of diameter ds mm. Aluminium wires= na numbers each of diameter da mm Resistvity of steel = ρ_{st} Resistvity of aluminium = ρ_{al}

Equivalent aluminium area $eqa = al_area + steel_area \times \frac{\rho_{al}}{\rho_{st}}$

or
$$eqa = na \times \frac{\pi}{4} \times da^2 + ns \times \frac{\pi}{4} \times ds^2 \times \frac{\rho_{al}}{\rho_{st}}$$

Resistance/km in Ohms $R = \frac{\rho_{al}}{eqa}$ Where ρ_{al} is in $\Omega mm^2 / km$

NOTE: IS 398 (Part-III)-1976 neglects the conductivity of steel core and calculates resistance taking a factor for accounting stranding and lay ratio.

AAAC/AAC CONDUCTORS

Equivalent aluminium area $ala = na \times \frac{\pi}{4} \times da^2$

Resistance/km in Ohms $R = \frac{\rho_{al}}{eqa}$ Where ρ_{al} is in $\Omega mm^2 / km$

NOTE: IS 398 (Part-III)-1976 calculates resistance taking a factor for accounting stranding and lay ratio.

Resistance at any other temperature than 20°C is given by:

$$R_t = R_{20} \bigg(\frac{241.5 + t}{241.5 + 20} \bigg)$$

6. **REACTANCE** $(x_l \text{ and } x_c)$

Inductance L in Henry/m of the overhead line comprised of conductors of radius r mm and spacing between conductors d mm is given by the following formula:

$$L = 0.5 + 2 \times \ln\left(\frac{d}{r}\right) \times 10^{-7}$$
 Henry/m

Corresponding inductive reactance per km of the overhead line is thus given by:

$$x_{l} = \frac{\pi}{100} \left[0.5 + 2 \times \ln\left(\frac{d}{r}\right) \right]$$
 Ohms/km

And Capacitance C in microfarad/km of the overhead line comprised of conductors of radius r mm and spacing between conductors d mm is given by the following formula:

$$C = \frac{1}{18 \times \ln\left(\frac{d}{r}\right)} \quad \text{mfd/km}$$

Corresponding Capacitive reactance per km of the overhead line is thus given by:

$$x_c = \frac{1}{2\pi fC} = \frac{18 \times 10^6 \times \ln\left(\frac{d}{r}\right)}{2\pi f} \qquad \text{Ohms/km}$$

Note: From the above equations of x_1 and x_c it may be noted that both the inductive and capacitive reactance depend on the spacing between conductors of the overhead line. Further, the spacing between overhead line conductors depends on the system voltage, span, sag, weather conditions etc. The values calculated are for a default conductor spacing of 700 mm.

7. WEIGHT OF CONDUCTOR

ACSR CONDUCTORS

Weight/Mass of ACSR conductor/km

= (Vol. of steel/km) x Steel_density + (Vol. of Al/km) x Al_density

$$W = \frac{\pi}{4} \times ds^2 \times \delta_s + \frac{\pi}{4} \times da^2 \times \delta_{al}$$

Where ds and da in mm δ_s and δ_{al} in gm/cc (or kg/litre)

AAAC/AAC CONDUCTORS

Weight of AAAC conductor/km = (Vol. of Al/km) x Al_density

$$W = \frac{\pi}{4} \times da^2 \times \delta_{al}$$

Where da in mm δ_{al} in gm/cc (or kg/litre)

NOTE: IS-398 (Part-II) & (Part-III) – 1976 takes mass of the conductor as the sum of masses of individual wires multiplied by a factor which accounts for stranding of wires (because the length of stranded wires are greater than that of central wire).

8. TENSILE STRENGTH

Tensile strength/ breaking load of conductor is taken as 98 percent of the sum of the breaking loads of the aluminium wires plus 85 percent of the sum of breaking loads of the component wires *before* stranding.

VOLTAGE REGULATION LIMITS IN OH LINES

RULE 54 & 55 OF INDIAN ELECTRICTY RULE- 1956 (AMMENDED UPTO 1st JULY 1990)

- 54. *Declared voltage of supply to consumer* Except with the written consent or with the previous sanction of the State Government a supplier shall not permit the voltage at the point of commencement of supply as defined under Rule 58 to vary from the declared voltage:
 - (i) in the case of low or medium voltage, by more than 6 per cent, or;
 - (ii) in the case of high voltage, by more than 6 per cent on the higher side or by more than 9 per cent on the lower side, or;
 - (iii) in the case of extra high voltage, by more than 10 per cent on the higher side or by more than 12.5 per cent on the lower side.
- 55. *Declared frequency of supply to consumer* Except with the written consent or with the previous sanction of the State Government a supplier shall not permit the frequency of an alternating current supply to vary the declared frequency by more than 3 per cent.